Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Lancet Microbe ; 5(1): e43-e51, 2024 01.
Article in English | MEDLINE | ID: mdl-38061383

ABSTRACT

BACKGROUND: In June, 2021, WHO published the most complete catalogue to date of resistance-conferring mutations in Mycobacterium tuberculosis. Here, we aimed to assess the performance of genome-based antimicrobial resistance prediction using the catalogue and its potential for improving diagnostics in a real low-burden setting. METHODS: In this retrospective population-based genomic study M tuberculosis isolates were collected from 25 clinical laboratories in the low-burden setting of the Valencia Region, Spain. Culture-positive tuberculosis cases reported by regional public health authorities between Jan 1, 2014, and Dec 31, 2016, were included. The drug resistance profiles of these isolates were predicted by the genomic identification, via whole-genome sequencing (WGS), of the high-confidence resistance-causing variants included in the catalogue and compared with the phenotype. We determined the minimum inhibitory concentration (MIC) of the isolates with discordant resistance profiles using the resazurin microtitre assay. FINDINGS: WGS was performed on 785 M tuberculosis complex culture-positive isolates, and the WGS resistance prediction sensitivities were: 85·4% (95% CI 70·8-94·4) for isoniazid, 73·3% (44·9-92·2) for rifampicin, 50·0% (21·1-78·9) for ethambutol, and 57·1% (34·0-78·2) for pyrazinamide; all specificities were more than 99·6%. Sensitivity values were lower than previously reported, but the overall pan-susceptibility accuracy was 96·4%. Genotypic analysis revealed that four phenotypically susceptible isolates carried mutations (rpoB Leu430Pro and rpoB Ile491Phe for rifampicin and fabG1 Leu203Leu for isoniazid) known to give borderline resistance in standard phenotypic tests. Additionally, we identified three putative resistance-associated mutations (inhA Ser94Ala, katG Leu48Pro, and katG Gly273Arg for isoniazid) in samples with substantially higher MICs than those of susceptible isolates. Combining both genomic and phenotypic data, in accordance with the WHO diagnostic guidelines, we could detect two new multidrug-resistant cases. Additionally, we detected 11 (1·6%) of 706 isolates to be monoresistant to fluoroquinolone, which had been previously undetected. INTERPRETATION: We showed that the WHO catalogue enables the detection of resistant cases missed in phenotypic testing in a low-burden region, thus allowing for better patient-tailored treatment. We also identified mutations not included in the catalogue, relevant at the local level. Evidence from this study, together with future updates of the catalogue, will probably lead in the future to the partial replacement of culture testing with WGS-based drug susceptibility testing in our setting. FUNDING: European Research Council and the Spanish Ministerio de Ciencia.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Retrospective Studies , Spain/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Mutation/genetics , Genomics , World Health Organization
2.
Clin Infect Dis ; 78(4): 842-845, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38048599

ABSTRACT

Multidrug-resistant(MDR) tuberculosis in Southern Africa is of great concern, exacerbated by the spread of a clone harboring a mutation missed by Xpert Ultra. In Southern Mozambique, the presence of such mutation and rising cases of non-MDR isoniazid resistance highlights the need to ensure accurate detection of antimicrobial-resistance in the country.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Rifampin/pharmacology , Rifampin/therapeutic use , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Resistance, Bacterial/genetics , Mozambique , Mutation , Sensitivity and Specificity
3.
mSphere ; 7(6): e0034622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36448779

ABSTRACT

Limiting outbreaks in long-term care facilities (LTCFs) is a cornerstone strategy to avoid an excess of COVID-19-related morbidity and mortality and to reduce its burden on the health system. We studied a large outbreak that occurred at an LTCF, combining methods of classical and genomic epidemiology analysis. The outbreak lasted for 31 days among residents, with an attack rate of 98% and 57% among residents and staff, respectively. The case fatality rate among residents was 16% (n = 15). Phylogenetic analysis of 59 SARS-CoV-2 isolates revealed the presence of two closely related viral variants in all cases (B.1.177 lineage), revealing a far more complex outbreak than initially thought and suggesting an initial spread driven by staff members. In turn, our results suggest that resident relocations to mitigate viral spread might have increased the risk of infection for staff members, creating secondary chains of transmission that were responsible for prolonging the outbreak. Our results highlight the importance of considering unnoticed chains of transmission early during an outbreak and making an adequate use and interpretation of diagnostic tests. Outbreak containment measures should be carefully tailored to each LTCF. IMPORTANCE The impact of COVID-19 on long-term care facilities (LTCFs) has been disproportionately large due to the high frailty of the residents. Here, we report epidemiological and genomic findings of a large outbreak that occurred at an LTCF, which ultimately affected almost all residents and nearly half of staff members. We found that the outbreak was initially driven by staff members; however, later resident relocation to limit the outbreak resulted in transmission from residents to staff members, evidencing the complexity and different phases of the outbreak. The phylogenetic analysis of SARS-CoV-2 isolates indicated that two closely related variants were responsible for the large outbreak. Our study highlights the importance of combining methods of classical and genomic epidemiology to take appropriate outbreak containment measures in LTCFs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Spain/epidemiology , Long-Term Care/methods , Phylogeny , Disease Outbreaks , Genomics
4.
Microb Genom ; 8(7)2022 07.
Article in English | MEDLINE | ID: mdl-35787782

ABSTRACT

Genomic studies of the Mycobacterium tuberculosis complex (MTBC) might shed light on the dynamics of its transmission, especially in high-burden settings, where recent outbreaks are embedded in the complex natural history of the disease. To this end, we conducted a 1 year prospective surveillance-based study in Mozambique. We applied whole-genome sequencing (WGS) to 295 positive cultures. We fully characterized MTBC isolates by phylogenetics and dating evaluation, and carried out a molecular epidemiology analysis to investigate further associations with pre-defined transmission risk factors. The majority of strains (49.5%, 136/275) belonged to lineage (L) 4; 57.8 % of them (159/275) were in genomic transmission clusters (cut-off 5 SNPs), and a strikingly high proportion (45.5%) shared an identical genotype (0 SNP pairwise distance). We found two 'likely endemic' clades, comprising 67 strains, belonging to L1.2, which dated back to the late 19th century and were associated with recent spread among people living with human immunodeficiency virus (PLHIV). We describe for the first time the population structure of MTBC in our region, a high tuberculosis (TB)/HIV burden area. Clustering analysis revealed an unforeseen pattern of spread and high rates of progression to active TB, suggesting weaknesses in TB control activities. The long-term presence of local strains in Mozambique, which were responsible for large transmission among HIV/TB-coinfected patients, calls into question the role of HIV in TB transmission.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , HIV Infections/epidemiology , Humans , Mozambique/epidemiology , Mycobacterium tuberculosis/genetics , Prospective Studies , Tuberculosis/epidemiology
5.
Elife ; 112022 07 26.
Article in English | MEDLINE | ID: mdl-35880398

ABSTRACT

Transmission is a driver of tuberculosis (TB) epidemics in high-burden regions, with assumed negligible impact in low-burden areas. However, we still lack a full characterization of transmission dynamics in settings with similar and different burdens. Genomic epidemiology can greatly help to quantify transmission, but the lack of whole genome sequencing population-based studies has hampered its application. Here, we generate a population-based dataset from Valencia region and compare it with available datasets from different TB-burden settings to reveal transmission dynamics heterogeneity and its public health implications. We sequenced the whole genome of 785 Mycobacterium tuberculosis strains and linked genomes to patient epidemiological data. We use a pairwise distance clustering approach and phylodynamic methods to characterize transmission events over the last 150 years, in different TB-burden regions. Our results underscore significant differences in transmission between low-burden TB settings, i.e., clustering in Valencia region is higher (47.4%) than in Oxfordshire (27%), and similar to a high-burden area as Malawi (49.8%). By modeling times of the transmission links, we observed that settings with high transmission rate are associated with decades of uninterrupted transmission, irrespective of burden. Together, our results reveal that burden and transmission are not necessarily linked due to the role of past epidemics in the ongoing TB incidence, and highlight the need for in-depth characterization of transmission dynamics and specifically tailored TB control strategies.


Subject(s)
Epidemics , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Population Dynamics , Tuberculosis/epidemiology , Whole Genome Sequencing
6.
BMC Genomics ; 23(1): 465, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35751020

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) has been associated with treatment failure, and the development of drug resistance in tuberculosis (TB). Also, whole-genome sequencing has provided a better understanding and allowed the growth of knowledge about polymorphisms in genes associated with drug resistance. Considering the above, this study analyzes genome sequences to evaluate the influence of type 2 diabetes mellitus in the development of mutations related to tuberculosis drug resistance. M. tuberculosis isolates from individuals with (n = 74), and without (n = 74) type 2 diabetes mellitus was recovered from online repositories, and further analyzed. RESULTS: The results showed the presence of 431 SNPs with similar proportions between diabetics, and non-diabetics individuals (48% vs. 52%), but with no significant relationship. A greater number of mutations associated with rifampicin resistance was observed in the T2DM-TB individuals (23.2% vs. 16%), and the exclusive presence of rpoBQ432L, rpoBQ432P, rpoBS441L, and rpoBH445L variants. While these variants are not private to T2DM-TB cases they are globally rare highlighting a potential role of T2DM. The phylogenetic analysis showed 12 sublineages, being 4.1.1.3, and 4.1.2.1 the most prevalent in T2DM-TB individuals but not differing from those most prevalent in their geographic location. Four clonal complexes were found, however, no significant relationship with T2DM was observed. Samples size and potential sampling biases prevented us to look for significant associations. CONCLUSIONS: The occurrence of globally rare rifampicin variants identified only in isolates from individuals with T2DM could be due to the hyperglycemic environment within the host. Therefore, further studies about the dynamics of SNPs' generation associated with antibiotic resistance in patients with diabetes mellitus are necessary.


Subject(s)
Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Phylogeny , Polymorphism, Single Nucleotide , Rifampin/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/genetics , Whole Genome Sequencing
7.
Genes (Basel) ; 13(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35456415

ABSTRACT

Genes related to DNA damage repair in Mycobacterium tuberculosis are critical for survival and genomic diversification. The aim of this study is to compare the presence of SNPs in genes related to DNA damage repair in sensitive and drug-resistant M. tuberculosis genomes isolated from patients with and without type 2 diabetes mellitus (T2DM). We collected 399 M. tuberculosis L4 genomes from several public repositories; 224 genomes belonging to hosts without T2DM, of which 123 (54.9%) had drug sensitive tuberculosis (TB) and 101 (45.1%) had drug resistance (DR)-TB; and 175 genomes from individuals with T2DM, of which 100 (57.1%) had drug sensitive TB and 75 (42.9%) had DR-TB. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed and compared with the resistance profile and the presence/absence of T2DM in the host. The results show the phylogenetic relationships of some SNPS and L4 sub-lineages, as well as differences in the distribution of SNPs present in DNA damage repair-related genes related to the resistance profile of the infecting strain and the presence of T2DM in the host. Given these differences, it was possible to generate two discriminant functions to distinguish between drug sensitive and drug resistant genomes, as well as patients with or without T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , DNA Damage/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Drug Resistance , Humans , Mycobacterium tuberculosis/genetics , Phylogeny , Polymorphism, Single Nucleotide , Tuberculosis/drug therapy , Tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/microbiology
8.
mBio ; 12(6): e0231521, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781748

ABSTRACT

We have detected two mutations in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at amino acid positions 1163 and 1167 that appeared independently in multiple transmission clusters and different genetic backgrounds. Furthermore, both mutations appeared together in a cluster of 1,627 sequences belonging to clade 20E. This cluster is characterized by 12 additional single nucleotide polymorphisms but no deletions. The available structural information on the S protein in the pre- and postfusion conformations predicts that both mutations confer rigidity, which could potentially decrease viral fitness. Accordingly, we observed reduced infectivity of this spike genotype relative to the ancestral 20E sequence in vitro, and the levels of viral RNA in nasopharyngeal swabs were not significantly higher. Furthermore, the mutations did not impact thermal stability or antibody neutralization by sera from vaccinated individuals but moderately reduce neutralization by convalescent-phase sera from the early stages of the pandemic. Despite multiple successful appearances of the two spike mutations during the first year of SARS-CoV-2 evolution, the genotype with both mutations was displaced upon the expansion of the 20I (Alpha) variant. The midterm fate of the genotype investigated was consistent with the lack of advantage observed in the clinical and experimental data. IMPORTANCE We observed repeated, independent emergence of mutations in the SARS-CoV-2 spike involving amino acids 1163 and 1167, within the HR2 functional motif. Conclusions derived from evolutionary and genomic diversity analysis suggest that the co-occurrence of both mutations might pose an advantage for the virus and therefore a threat to effective control of the epidemic. However, biological characterization, including in vitro experiments and analysis of clinical data, indicated no clear benefit in terms of stability or infectivity. In agreement with this, continuous epidemiological surveillance conducted months after the first observations revealed that both mutations did not successfully outcompete other variants and stopped circulating 9 months after their initial detection. Additionally, we evaluated the potential of both mutations to escape neutralizing antibodies, finding that the presence of these two mutations on their own is not likely to confer antibody escape. Our results provide an example of how newly emerged spike mutations can be assessed to better understand the risk posed by new variants and indicate that some spike mutations confer no clear advantage to the virus despite independently emerging multiple times and are eventually displaced by fitter variants.


Subject(s)
Evolution, Molecular , Mutation , Phenotype , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , COVID-19/virology , Europe , Genetic Variation , Genome, Viral , Humans , Neutralization Tests , SARS-CoV-2/immunology
9.
Nat Genet ; 53(10): 1405-1414, 2021 10.
Article in English | MEDLINE | ID: mdl-34594042

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected the world radically since 2020. Spain was one of the European countries with the highest incidence during the first wave. As a part of a consortium to monitor and study the evolution of the epidemic, we sequenced 2,170 samples, diagnosed mostly before lockdown measures. Here, we identified at least 500 introductions from multiple international sources and documented the early rise of two dominant Spanish epidemic clades (SECs), probably amplified by superspreading events. Both SECs were related closely to the initial Asian variants of SARS-CoV-2 and spread widely across Spain. We inferred a substantial reduction in the effective reproductive number of both SECs due to public-health interventions (Re < 1), also reflected in the replacement of SECs by a new variant over the summer of 2020. In summary, we reveal a notable difference in the initial genetic makeup of SARS-CoV-2 in Spain compared with other European countries and show evidence to support the effectiveness of lockdown measures in controlling virus spread, even for the most successful genetic variants.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Communicable Disease Control/organization & administration , Models, Statistical , SARS-CoV-2/genetics , COVID-19/virology , Communicable Disease Control/methods , Humans , Incidence , Phylogeny , Physical Distancing , Quarantine/methods , Quarantine/organization & administration , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spain/epidemiology
10.
Sci Rep ; 11(1): 1870, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479318

ABSTRACT

Whole genome sequencing (WGS) has been shown to be superior to traditional procedures of genotyping in tuberculosis (TB), nevertheless, reports of its use in drug resistant TB (DR-TB) isolates circulating in Mexico, are practically unknown. Considering the above the main of this work was to identify and characterize the lineages and genomic transmission clusters present in 67 DR-TB isolates circulating in southeastern Mexico. The results show the presence of three major lineages: L1 (3%), L2 (3%) and L4 (94%), the last one included 16 sublineages. Sublineage 4.1.1.3 (X3) was predominant in 18 (27%) of the isolates, including one genomic cluster, formed by eleven multidrug resistant isolates and sharing the SIT 3278, which seems to be restricted to Mexico. By the use of WGS, it was possible to identify the high prevalence of L4 and a high number of sublineages circulating in the region, also was recognized the presence of a novel X3 sublineage, formed exclusively by multidrug resistant isolates and with restrictive circulation in Mexico for at least the past 17 years.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Genotyping Techniques/methods , Mycobacterium tuberculosis/genetics , Whole Genome Sequencing/methods , Adult , Antitubercular Agents/pharmacology , Cross-Sectional Studies , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Female , Genomics/methods , Genotype , Humans , Male , Mexico , Middle Aged , Multigene Family/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/physiology , Phylogeny , Polymorphism, Single Nucleotide , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
11.
Front Vet Sci ; 8: 805004, 2021.
Article in English | MEDLINE | ID: mdl-35127883

ABSTRACT

Farmed minks have been reported to be highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may represent a risk to humans. In this study, we describe the first outbreak of SARS-CoV-2 occurred on a mink farm in Spain, between June and July 2020, involving 92,700 animals. The outbreak started shortly after some farm workers became seropositive for SARS-CoV-2. Minks showed no clinical signs compatible with SARS-CoV-2 infection throughout the outbreak. Samples from 98 minks were collected for histopathological, serological, and molecular studies. Twenty out of 98 (20.4%) minks were positive by RT-qPCR and 82 out 92 (89%) seroconverted. This finding may reflect a rapid spread of the virus at the farm with most of the animals overcoming the infection. Additionally, SARS-CoV-2 was detected by RT-qPCR in 30% of brain samples from positive minks. Sequencing analysis showed that the mink sequences were not closely related with the other mink SARS-CoV-2 sequences available, and that this mink outbreak has its probable origin in one of the genetic variants that were prevalent in Spain during the first COVID-19 epidemic wave. Histological studies revealed bronchointerstitial pneumonia in some animals. Immunostaining of viral nucleocapsid was also observed in nasal turbinate tissue. Farmed minks could therefore constitute an important SARS-CoV-2 reservoir, contributing to virus spread among minks and humans. Consequently, continuous surveillance of mink farms is needed.

12.
Enferm Infecc Microbiol Clin (Engl Ed) ; 38 Suppl 1: 32-38, 2020 Jan.
Article in English, Spanish | MEDLINE | ID: mdl-32111363

ABSTRACT

For the first time, next generation sequencing technologies provide access to genomic information at a price and scale that allow their implementation in routine clinical practice and epidemiology. While there are still many obstacles to their implementation, there are also multiple examples of their major advantages compared with previous methods. Their main advantage is that a single determination allows epidemiological information on the causative microorganism to be obtained simultaneously, as well as its resistance profile, although these advantages vary according to the pathogen under study. This review discusses several examples of the clinical and epidemiological use of next generation sequencing applied to complete genomes and microbiomes and reflects on its future in clinical practice.


Subject(s)
Communicable Diseases , High-Throughput Nucleotide Sequencing , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Genome , Genomics , Humans , Microbiota
13.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 38(supl.1): 32-38, ene. 2020. mapas
Article in Spanish | IBECS | ID: ibc-201384

ABSTRACT

Por primera vez, la tecnología de secuenciación masiva permite acceder a la información genómica a un precio y a una escala tales, que se está implementado en la práctica clínica y epidemiológica rutinaria. Los obstáculos para dicha implementación son todavía muchos. Sin embargo, ya existen muchos ejemplos de las grandes ventajas que supone en comparación con métodos anteriores. Esto es, sobre todo, porque con una sola determinación podemos obtener simultáneamente información epidemiológica del microorganismo causante, así como de su perfil de resistencias, si bien estas ventajas están más o menos desarrolladas según el patógeno considerado. En esta revisión se repasan varios ejemplos del uso clínico y epidemiológico de la secuenciación masiva aplicada a genomas completos y microbiomas, y se reflexiona sobre su futuro en la práctica clínica


For the first time, next generation sequencing technologies provide access to genomic information at a price and scale that allow their implementation in routine clinical practice and epidemiology. While there are still many obstacles to their implementation, there are also multiple examples of their major advantages compared with previous methods. Their main advantage is that a single determination allows epidemiological information on the causative microorganism to be obtained simultaneously, as well as its resistance profile, although these advantages vary according to the pathogen under study. This review discusses several examples of the clinical and epidemiological use of next generation sequencing applied to complete genomes and microbiomes and reflects on its future in clinical practice


Subject(s)
Humans , Nucleic Acid Amplification Techniques/methods , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Drug Resistance, Microbial , Genome , Genomics/methods
14.
Lancet Microbe ; 1(4): e175-e183, 2020 Aug.
Article in English | MEDLINE | ID: mdl-35544271

ABSTRACT

BACKGROUND: Direct whole-genome sequencing of Mycobacterium tuberculosis from clinical specimens will be a major breakthrough in tuberculosis diagnosis and control. To date, direct whole-genome sequencing has never been used in genomic epidemiology, and its accuracy in transmission inference remains unknown. We investigated the technical challenges imposed by direct whole-genome sequencing, and used it to infer transmission clusters and predict drug resistance. METHODS: Using an optimised workflow, we did direct whole-genome sequencing for 37 clinical specimens from 23 tuberculosis patients. Nine sputum samples from nine patients who were infected with different non-tuberculous mycobacteria and culture-negative for tuberculosis were used as controls in the qPCR assays and pre-sequencing runs. Additionally, 780 clinical isolates in the region of Comunidad Valenciana (Spain) were whole-genome sequenced between Jan 1, 2014, and Dec 31, 2016. We analysed the genomic variants to build a tuberculosis transmission network for the region, including the clinical specimens, and to predict drug susceptibility profiles. FINDINGS: After sequencing 37 clinical specimens, 28 specimens (22 [85%] of 26 smear-positive and six [55%] of 11 smear-negative) met the quality criteria for downstream analysis. All 28 clinical specimens clustered with their matching culture isolates, with a median distance of 0 single nucleotide polymorphisms. Of the 28 clinical specimens, 16 (57%) were accurately assigned to ten transmission clusters in the region, and 12 (43%) were unique cases. Transmission inferences and drug-susceptibility predictions from direct whole-genome sequencing data were concordant with sequences from corresponding cultures and phenotypic drug-susceptibility testing. Complete genomic analysis, within a week of specimen receipt, cost €217 per sample (excluding personnel costs). INTERPRETATION: Direct whole-genome sequencing could be used to accurately delineate transmission clusters of tuberculosis and conduct culture-independent surveillance. Compared with conventional approaches, direct whole-genome sequencing allows researchers to do real-time genomic epidemiology and drug resistance surveillance in settings where culture and drug susceptibility testing are not available. FUNDING: European Research Council; Ministerio de Ciencia, Innovación y Universidades (Spanish Government).

15.
Microb Drug Resist ; 26(7): 732-740, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31874045

ABSTRACT

Whole genome sequencing (WGS) has been proposed as a tool for the diagnosis of drug resistance in tuberculosis (TB); however, there have been few studies on its effectiveness in countries with significantly high drug resistance rates. This study therefore aimed to evaluate the effectiveness of WGS to identify mutations related to drug resistance in TB isolates from an endemic region of Mexico. The results showed that, of 35 multidrug-resistant isolates analyzed, the values of congruence found between the phenotypic drug susceptibility testing and polymorphisms were 94% for isoniazid, 97% for rifampicin, 90% for ethambutol, and 82% for pyrazinamide. It was also possible to identify eight isolates as potential pre-extensive drug resistant (XDR) and one as XDR. Twenty nine isolates were classified within L4 and two transmission clusters were identified. The results show the potential utility of WGS for predicting resistance against first- and second-line drugs, as well as providing a phylogenetic characterization of TB drug-resistant isolates circulating in Mexico.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics , Extensively Drug-Resistant Tuberculosis/genetics , Humans , Mexico/epidemiology , Microbial Sensitivity Tests , Phenotype , Polymorphism, Genetic , Whole Genome Sequencing
16.
PLoS Med ; 16(10): e1002961, 2019 10.
Article in English | MEDLINE | ID: mdl-31671150

ABSTRACT

BACKGROUND: Whole genome sequencing provides better delineation of transmission clusters in Mycobacterium tuberculosis than traditional methods. However, its ability to reveal individual transmission links within clusters is limited. Here, we used a 2-step approach based on Bayesian transmission reconstruction to (1) identify likely index and missing cases, (2) determine risk factors associated with transmitters, and (3) estimate when transmission happened. METHODS AND FINDINGS: We developed our transmission reconstruction method using genomic and epidemiological data from a population-based study from Valencia Region, Spain. Tuberculosis (TB) incidence during the study period was 8.4 cases per 100,000 people. While the study is ongoing, the sampling frame for this work includes notified TB cases between 1 January 2014 and 31 December 2016. We identified a total of 21 transmission clusters that fulfilled the criteria for analysis. These contained a total of 117 individuals diagnosed with active TB (109 with epidemiological data). Demographic characteristics of the study population were as follows: 80/109 (73%) individuals were Spanish-born, 76/109 (70%) individuals were men, and the mean age was 42.51 years (SD 18.46). We found that 66/109 (61%) TB patients were sputum positive at diagnosis, and 10/109 (9%) were HIV positive. We used the data to reveal individual transmission links, and to identify index cases, missing cases, likely transmitters, and associated transmission risk factors. Our Bayesian inference approach suggests that at least 60% of index cases are likely misidentified by local public health. Our data also suggest that factors associated with likely transmitters are different to those of simply being in a transmission cluster, highlighting the importance of differentiating between these 2 phenomena. Our data suggest that type 2 diabetes mellitus is a risk factor associated with being a transmitter (odds ratio 0.19 [95% CI 0.02-1.10], p < 0.003). Finally, we used the most likely timing for transmission events to study when TB transmission occurred; we identified that 5/14 (35.7%) cases likely transmitted TB well before symptom onset, and these were largely sputum negative at diagnosis. Limited within-cluster diversity does not allow us to extrapolate our findings to the whole TB population in Valencia Region. CONCLUSIONS: In this study, we found that index cases are often misidentified, with downstream consequences for epidemiological investigations because likely transmitters can be missed. Our findings regarding inferred transmission timing suggest that TB transmission can occur before patient symptom onset, suggesting also that TB transmits during sub-clinical disease. This result has direct implications for diagnosing TB and reducing transmission. Overall, we show that a transition to individual-based genomic epidemiology will likely close some of the knowledge gaps in TB transmission and may redirect efforts towards cost-effective contact investigations for improved TB control.


Subject(s)
Contact Tracing/methods , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/transmission , Whole Genome Sequencing , Adolescent , Adult , Aged , Bayes Theorem , Biomarkers , Female , Genomics , HIV Seropositivity/epidemiology , Humans , Incidence , Male , Middle Aged , Phylogeny , Polymorphism, Single Nucleotide , Risk Factors , Spain/epidemiology , Treatment Outcome , Tuberculosis, Pulmonary/epidemiology , Young Adult
17.
Sci Rep ; 9(1): 15343, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31653874

ABSTRACT

The Mycobacterium tuberculosis complex (MTBC) comprises the species that causes tuberculosis (TB) which affects 10 million people every year. A robust classification of species, lineages, and sub-lineages is important to explore associations with drug resistance, epidemiological patterns or clinical outcomes. We present a rapid and easy-to-follow methodology to classify clinical TB samples into the main MTBC clades. Approaches are based on the identification of lineage and sub-lineage diagnostic SNP using a real-time PCR high resolution melting assay and classic Sanger sequencing from low-concentrated, low quality DNA. Thus, suitable for implementation in middle and low-income countries. Once we validated our molecular procedures, we characterized a total of 491 biological samples from human and cattle hosts, representing countries with different TB burden. Overall, we managed to genotype ~95% of all samples despite coming from unpurified and low-concentrated DNA. Our approach also allowed us to detect zoonotic cases in eight human samples from Nigeria. To conclude, the molecular techniques we have developed, are accurate, discriminative and reproducible. Furthermore, it costs less than other classic typing methods, resulting in an affordable alternative method in TB laboratories.


Subject(s)
Bacterial Typing Techniques/methods , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide/genetics , Genotype , Geography , Humans , Nigeria/epidemiology , Phylogeny , Sequence Analysis, DNA , Spain/epidemiology
18.
PLoS One ; 14(6): e0213046, 2019.
Article in English | MEDLINE | ID: mdl-31166945

ABSTRACT

BACKGROUND: Whole genome sequencing (WGS) has been proposed as a tool for diagnosing drug resistance in tuberculosis. However, reports of its effectiveness in endemic countries with important numbers of drug resistance are scarce. The goal of this study was to evaluate the effectiveness of this procedure in isolates from a tuberculosis endemic region in Mexico. METHODS: WGS analysis was performed in 81 tuberculosis positive clinical isolates with a known phenotypic profile of resistance against first-line drugs (isoniazid, rifampin, ethambutol, pyrazinamide and streptomycin). Mutations related to drug resistance were identified for each isolate; drug resistant genotypes were predicted and compared with the phenotypic profile. Genotypes and transmission clusters based on genetic distances were also characterized. FINDINGS: Prediction by WGS analysis of resistance against isoniazid, rifampicin, ethambutol, pyrazinamide and streptomycin showed sensitivity values of 84%, 96%, 71%, 75% and 29%, while specificity values were 100%, 94%, 90%, 90% and 98%, respectively. Prediction of multidrug resistance showed a sensitivity of 89% and specificity of 97%. Moreover, WGS analysis revealed polymorphisms related to second-line drug resistance, enabling classification of eight and two clinical isolates as pre- and extreme drug-resistant cases, respectively. Lastly, four lineages were identified in the population (L1, L2, L3 and L4). The most frequent of these was L4, which included 90% (77) of the isolates. Six transmission clusters were identified; the most frequent was TC6, which included 13 isolates with a L4.1.1 and a predominantly multidrug-resistant condition. CONCLUSIONS: The results illustrate the utility of WGS for establishing the potential for prediction of resistance against first and second line drugs in isolates of tuberculosis from the region. They also demonstrate the feasibility of this procedure for use as a tool to support the epidemiological surveillance of drug- and multidrug-resistant tuberculosis.


Subject(s)
Tuberculosis, Multidrug-Resistant/diagnosis , Whole Genome Sequencing/methods , Antitubercular Agents/pharmacology , Cluster Analysis , Drug Resistance, Bacterial/genetics , Endemic Diseases , Genotype , Humans , Mexico , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Phylogeny
19.
J Infect Dis ; 220(2): 316-320, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30875421

ABSTRACT

Understanding why some multidrug-resistant tuberculosis cases are not detected by rapid phenotypic and genotypic routine clinical tests is essential to improve diagnostic assays and advance toward personalized tuberculosis treatment. Here, we combine whole-genome sequencing with single-colony phenotyping to identify a multidrug-resistant strain that had infected a patient for 9 years. Our investigation revealed the failure of rapid testing and genome-based prediction tools to identify the multidrug-resistant strain. The false-negative findings were caused by uncommon rifampicin and isoniazid resistance mutations. Although whole-genome sequencing data helped to personalize treatment, the patient developed extensively drug-resistant tuberculosis, highlighting the importance of coupling new diagnostic methods with appropriate treatment regimens.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/genetics , Mutation/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/genetics , Antitubercular Agents/therapeutic use , Bacterial Proteins/genetics , Diagnostic Errors/prevention & control , Extensively Drug-Resistant Tuberculosis/drug therapy , Genome, Bacterial/genetics , Genotype , Humans , Isoniazid/therapeutic use , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Rifampin/therapeutic use , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
20.
N Engl J Med ; 379(15): 1403-1415, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30280646

ABSTRACT

BACKGROUND: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear. METHODS: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance. RESULTS: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted. CONCLUSIONS: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.).


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Whole Genome Sequencing , Antitubercular Agents/therapeutic use , Ethambutol/pharmacology , Genotype , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Phenotype , Pyrazinamide/pharmacology , Rifampin/pharmacology , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...